Module:TableTools: Difference between revisions

From Wings of Fire: The New World Wiki
(Update from sandbox per request)
m (1 revision imported: Wikipedia Infoboxes)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--                                   TableTools                                   --
--                               TableTools                                       --
--                                                                                --
--                                                                                --
-- This module includes a number of functions for dealing with Lua tables.        --
-- This module includes a number of functions for dealing with Lua tables.        --
-- It is a meta-module, meant to be called from other Lua modules, and should not --
-- It is a meta-module, meant to be called from other Lua modules, and should     --
-- be called directly from #invoke.                                               --
-- not be called directly from #invoke.                                           --
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]


local libraryUtil = require('libraryUtil')
local libraryUtil = require('libraryUtil')
Line 17: Line 19:
local checkTypeMulti = libraryUtil.checkTypeMulti
local checkTypeMulti = libraryUtil.checkTypeMulti


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- isPositiveInteger
-- isPositiveInteger
Line 25: Line 28:
-- hash part of a table.
-- hash part of a table.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.isPositiveInteger(v)
function p.isPositiveInteger(v)
return type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity
if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then
return true
else
return false
end
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- isNan
-- isNan
--
--
-- This function returns true if the given number is a NaN value, and false if
-- This function returns true if the given number is a NaN value, and false
-- not. Although it doesn't operate on tables, it is included here as it is useful
-- if not. Although it doesn't operate on tables, it is included here as it is
-- for determining whether a value can be a valid table key. Lua will generate an
-- useful for determining whether a value can be a valid table key. Lua will
-- error if a NaN is used as a table key.
-- generate an error if a NaN is used as a table key.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.isNan(v)
function p.isNan(v)
return type(v) == 'number' and v ~= v
if type(v) == 'number' and tostring(v) == '-nan' then
return true
else
return false
end
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- shallowClone
-- shallowClone
Line 48: Line 63:
-- table will have no metatable of its own.
-- table will have no metatable of its own.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.shallowClone(t)
function p.shallowClone(t)
checkType('shallowClone', 1, t, 'table')
local ret = {}
local ret = {}
for k, v in pairs(t) do
for k, v in pairs(t) do
Line 57: Line 72:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- removeDuplicates
-- removeDuplicates
Line 64: Line 80:
-- removed, but otherwise the array order is unchanged.
-- removed, but otherwise the array order is unchanged.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
function p.removeDuplicates(arr)
--]]
checkType('removeDuplicates', 1, arr, 'table')
function p.removeDuplicates(t)
checkType('removeDuplicates', 1, t, 'table')
local isNan = p.isNan
local isNan = p.isNan
local ret, exists = {}, {}
local ret, exists = {}, {}
for _, v in ipairs(arr) do
for i, v in ipairs(t) do
if isNan(v) then
if isNan(v) then
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
ret[#ret + 1] = v
ret[#ret + 1] = v
elseif not exists[v] then
else
ret[#ret + 1] = v
if not exists[v] then
exists[v] = true
ret[#ret + 1] = v
end
exists[v] = true
end
end
end
end
return ret
return ret
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- numKeys
-- numKeys
Line 86: Line 106:
-- keys that have non-nil values, sorted in numerical order.
-- keys that have non-nil values, sorted in numerical order.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.numKeys(t)
function p.numKeys(t)
checkType('numKeys', 1, t, 'table')
checkType('numKeys', 1, t, 'table')
local isPositiveInteger = p.isPositiveInteger
local isPositiveInteger = p.isPositiveInteger
local nums = {}
local nums = {}
for k in pairs(t) do
for k, v in pairs(t) do
if isPositiveInteger(k) then
if isPositiveInteger(k) then
nums[#nums + 1] = k
nums[#nums + 1] = k
Line 99: Line 120:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- affixNums
-- affixNums
Line 104: Line 126:
-- This takes a table and returns an array containing the numbers of keys with the
-- This takes a table and returns an array containing the numbers of keys with the
-- specified prefix and suffix. For example, for the table
-- specified prefix and suffix. For example, for the table
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will return
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will
-- {1, 3, 6}.
-- return {1, 3, 6}.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.affixNums(t, prefix, suffix)
function p.affixNums(t, prefix, suffix)
checkType('affixNums', 1, t, 'table')
checkType('affixNums', 1, t, 'table')
Line 114: Line 137:
local function cleanPattern(s)
local function cleanPattern(s)
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
return s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
return s
end
end


Line 124: Line 148:


local nums = {}
local nums = {}
for k in pairs(t) do
for k, v in pairs(t) do
if type(k) == 'string' then
if type(k) == 'string' then
local num = mw.ustring.match(k, pattern)
local num = mw.ustring.match(k, pattern)
if num then
if num then
Line 136: Line 160:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- numData
-- numData
--
--
-- Given a table with keys like {"foo1", "bar1", "foo2", "baz2"}, returns a table
-- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
-- of subtables in the format
-- of subtables in the format  
-- {[1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'}}.
-- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
-- Keys that don't end with an integer are stored in a subtable named "other". The
-- Keys that don't end with an integer are stored in a subtable named "other".
-- compress option compresses the table so that it can be iterated over with
-- The compress option compresses the table so that it can be iterated over with
-- ipairs.
-- ipairs.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.numData(t, compress)
function p.numData(t, compress)
checkType('numData', 1, t, 'table')
checkType('numData', 1, t, 'table')
Line 175: Line 201:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- compressSparseArray
-- compressSparseArray
Line 182: Line 209:
-- ipairs.
-- ipairs.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.compressSparseArray(t)
function p.compressSparseArray(t)
checkType('compressSparseArray', 1, t, 'table')
checkType('compressSparseArray', 1, t, 'table')
Line 192: Line 220:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- sparseIpairs
-- sparseIpairs
Line 198: Line 227:
-- handle nil values.
-- handle nil values.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.sparseIpairs(t)
function p.sparseIpairs(t)
checkType('sparseIpairs', 1, t, 'table')
checkType('sparseIpairs', 1, t, 'table')
Line 214: Line 244:
end
end


--[[
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
-- size
-- size
Line 220: Line 251:
-- but for arrays it is more efficient to use the # operator.
-- but for arrays it is more efficient to use the # operator.
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
--]]
function p.size(t)
function p.size(t)
checkType('size', 1, t, 'table')
checkType('size', 1, t, 'table')
local i = 0
local i = 0
for _ in pairs(t) do
for k in pairs(t) do
i = i + 1
i = i + 1
end
end
return i
return i
end
end


local function defaultKeySort(item1, item2)
local function defaultKeySort(item1, item2)
Line 234: Line 268:
if type1 ~= type2 then
if type1 ~= type2 then
return type1 < type2
return type1 < type2
elseif type1 == 'table' or type1 == 'boolean' or type1 == 'function' then
else -- This will fail with table, boolean, function.
return tostring(item1) < tostring(item2)
else
return item1 < item2
return item1 < item2
end
end
end
end
------------------------------------------------------------------------------------
 
-- keysToList
--[[
--
Returns a list of the keys in a table, sorted using either a default
-- Returns an array of the keys in a table, sorted using either a default
comparison function or a custom keySort function.
-- comparison function or a custom keySort function.
]]
------------------------------------------------------------------------------------
function p.keysToList(t, keySort, checked)
function p.keysToList(t, keySort, checked)
if not checked then
if not checked then
checkType('keysToList', 1, t, 'table')
checkType('keysToList', 1, t, 'table')
checkTypeMulti('keysToList', 2, keySort, {'function', 'boolean', 'nil'})
checkTypeMulti('keysToList', 2, keySort, { 'function', 'boolean', 'nil' })
end
end
 
local arr = {}
local list = {}
local index = 1
local index = 1
for k in pairs(t) do
for key, value in pairs(t) do
arr[index] = k
list[index] = key
index = index + 1
index = index + 1
end
end
 
if keySort ~= false then
if keySort ~= false then
keySort = type(keySort) == 'function' and keySort or defaultKeySort
keySort = type(keySort) == 'function' and keySort or defaultKeySort
table.sort(arr, keySort)
table.sort(list, keySort)
end
end
 
return arr
return list
end
end


------------------------------------------------------------------------------------
--[[
-- sortedPairs
Iterates through a table, with the keys sorted using the keysToList function.
--
If there are only numerical keys, sparseIpairs is probably more efficient.
-- Iterates through a table, with the keys sorted using the keysToList function.
]]
-- If there are only numerical keys, sparseIpairs is probably more efficient.
------------------------------------------------------------------------------------
function p.sortedPairs(t, keySort)
function p.sortedPairs(t, keySort)
checkType('sortedPairs', 1, t, 'table')
checkType('sortedPairs', 1, t, 'table')
checkType('sortedPairs', 2, keySort, 'function', true)
checkType('sortedPairs', 2, keySort, 'function', true)
 
local arr = p.keysToList(t, keySort, true)
local list = p.keysToList(t, keySort, true)
 
local i = 0
local i = 0
return function ()
return function()
i = i + 1
i = i + 1
local key = arr[i]
local key = list[i]
if key ~= nil then
if key ~= nil then
return key, t[key]
return key, t[key]
Line 291: Line 321:
end
end


------------------------------------------------------------------------------------
--[[
-- isArray
Returns true if all keys in the table are consecutive integers starting at 1.
--
--]]
-- Returns true if the given value is a table and all keys are consecutive
function p.isArray(t)
-- integers starting at 1.
checkType("isArray", 1, t, "table")
------------------------------------------------------------------------------------
function p.isArray(v)
if type(v) ~= 'table' then
return false
end
local i = 0
local i = 0
for _ in pairs(v) do
for k, v in pairs(t) do
i = i + 1
i = i + 1
if v[i] == nil then
if t[i] == nil then
return false
return false
end
end
Line 311: Line 337:
end
end


------------------------------------------------------------------------------------
-- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 }
-- isArrayLike
function p.invert(array)
--
checkType("invert", 1, array, "table")
-- Returns true if the given value is iterable and all keys are consecutive
-- integers starting at 1.
------------------------------------------------------------------------------------
function p.isArrayLike(v)
if not pcall(pairs, v) then
return false
end
local i = 0
for _ in pairs(v) do
i = i + 1
if v[i] == nil then
return false
end
end
return true
end
 
------------------------------------------------------------------------------------
-- invert
--
-- Transposes the keys and values in an array. For example, {"a", "b", "c"} ->
-- {a = 1, b = 2, c = 3}. Duplicates are not supported (result values refer to
-- the index of the last duplicate) and NaN values are ignored.
------------------------------------------------------------------------------------
function p.invert(arr)
checkType("invert", 1, arr, "table")
local isNan = p.isNan
local map = {}
local map = {}
for i, v in ipairs(arr) do
for i, v in ipairs(array) do
if not isNan(v) then
map[v] = i
map[v] = i
end
end
end
 
return map
return map
end
end


------------------------------------------------------------------------------------
--[[
-- listToSet
{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true }
--
--]]
-- Creates a set from the array part of the table. Indexing the set by any of the
function p.listToSet(t)
-- values of the array returns true. For example, {"a", "b", "c"} ->
checkType("listToSet", 1, t, "table")
-- {a = true, b = true, c = true}. NaN values are ignored as Lua considers them
-- never equal to any value (including other NaNs or even themselves).
------------------------------------------------------------------------------------
function p.listToSet(arr)
checkType("listToSet", 1, arr, "table")
local isNan = p.isNan
local set = {}
local set = {}
for _, v in ipairs(arr) do
for _, item in ipairs(t) do
if not isNan(v) then
set[item] = true
set[v] = true
end
end
end
 
return set
return set
end
end


------------------------------------------------------------------------------------
--[[
-- deepCopy
Recursive deep copy function.
--
Preserves identities of subtables.
-- Recursive deep copy function. Preserves identities of subtables.
------------------------------------------------------------------------------------
]]
local function _deepCopy(orig, includeMetatable, already_seen)
local function _deepCopy(orig, includeMetatable, already_seen)
if type(orig) ~= "table" then
-- Stores copies of tables indexed by the original table.
return orig
already_seen = already_seen or {}
end
-- already_seen stores copies of tables indexed by the original table.
local copy = already_seen[orig]
local copy = already_seen[orig]
if copy ~= nil then
if copy ~= nil then
Line 388: Line 377:
end
end
copy = {}
if type(orig) == 'table' then
already_seen[orig] = copy -- memoize before any recursion, to avoid infinite loops
copy = {}
for orig_key, orig_value in pairs(orig) do
for orig_key, orig_value in pairs(orig) do
copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen)
copy[_deepCopy(orig_key, includeMetatable, already_seen)] = _deepCopy(orig_value, includeMetatable, already_seen)
end
end
already_seen[orig] = copy
if includeMetatable then
if includeMetatable then
local mt = getmetatable(orig)
local mt = getmetatable(orig)
if mt ~= nil then
if mt ~= nil then
setmetatable(copy, _deepCopy(mt, true, already_seen))
local mt_copy = deepcopy(mt, includeMetatable, already_seen)
setmetatable(copy, mt_copy)
already_seen[mt] = mt_copy
end
end
end
else -- number, string, boolean, etc
copy = orig
end
end
return copy
return copy
end
end
Line 407: Line 400:
function p.deepCopy(orig, noMetatable, already_seen)
function p.deepCopy(orig, noMetatable, already_seen)
checkType("deepCopy", 3, already_seen, "table", true)
checkType("deepCopy", 3, already_seen, "table", true)
return _deepCopy(orig, not noMetatable, already_seen or {})
return _deepCopy(orig, not noMetatable, already_seen)
end
end


------------------------------------------------------------------------------------
--[[
-- sparseConcat
Concatenates all values in the table that are indexed by a number, in order.
--
sparseConcat{ a, nil, c, d }  =>  "acd"
-- Concatenates all values in the table that are indexed by a number, in order.
sparseConcat{ nil, b, c, d }  =>  "bcd"
-- sparseConcat{a, nil, c, d}  =>  "acd"
]]
-- sparseConcat{nil, b, c, d}  =>  "bcd"
------------------------------------------------------------------------------------
function p.sparseConcat(t, sep, i, j)
function p.sparseConcat(t, sep, i, j)
local arr = {}
local list = {}
 
local arr_i = 0
local list_i = 0
for _, v in p.sparseIpairs(t) do
for _, v in p.sparseIpairs(t) do
arr_i = arr_i + 1
list_i = list_i + 1
arr[arr_i] = v
list[list_i] = v
end
end
 
return table.concat(arr, sep, i, j)
return table.concat(list, sep, i, j)
end
end


------------------------------------------------------------------------------------
--[[
-- length
-- This returns the length of a table, or the first integer key n counting from
--
-- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return
-- Finds the length of an array, or of a quasi-array with keys such as "data1",
-- a different value when there are gaps in the array portion of the table.
-- "data2", etc., using an exponential search algorithm. It is similar to the
-- Intended to be used on data loaded with mw.loadData. For other tables, use #.
-- operator #, but may return a different value when there are gaps in the array
-- Note: #frame.args in frame object always be set to 0, regardless of  
-- portion of the table. Intended to be used on data loaded with mw.loadData. For
-- the number of unnamed template parameters, so use this function for
-- other tables, use #.
-- frame.args.
-- Note: #frame.args in frame object always be set to 0, regardless of the number
--]]
-- of unnamed template parameters, so use this function for frame.args.
function p.length(t)
------------------------------------------------------------------------------------
local i = 1
function p.length(t, prefix)
while t[i] ~= nil do
-- requiring module inline so that [[Module:Exponential search]] which is
i = i + 1
-- only needed by this one function doesn't get millions of transclusions
end
local expSearch = require("Module:Exponential search")
return i - 1
checkType('length', 1, t, 'table')
checkType('length', 2, prefix, 'string', true)
return expSearch(function (i)
local key
if prefix then
key = prefix .. tostring(i)
else
key = i
end
return t[key] ~= nil
end) or 0
end
end


------------------------------------------------------------------------------------
-- inArray
--
-- Returns true if valueToFind is a member of the array, and false otherwise.
------------------------------------------------------------------------------------
function p.inArray(arr, valueToFind)
function p.inArray(arr, valueToFind)
checkType("inArray", 1, arr, "table")
checkType("inArray", 1, arr, "table")
-- if valueToFind is nil, error?
-- if valueToFind is nil, error?
 
for _, v in ipairs(arr) do
for _, v in ipairs(arr) do
if v == valueToFind then
if v == valueToFind then
Line 471: Line 448:
end
end
end
end
return false
return false
end
------------------------------------------------------------------------------------
-- merge
--
-- Given the arrays, returns an array containing the elements of each input array
-- in sequence.
------------------------------------------------------------------------------------
function p.merge(...)
local arrays = {...}
local ret = {}
for i, arr in ipairs(arrays) do
checkType('merge', i, arr, 'table')
for _, v in ipairs(arr) do
ret[#ret + 1] = v
end
end
return ret
end
------------------------------------------------------------------------------------
-- extend
--
-- Extends the first array in place by appending all elements from the second
-- array.
------------------------------------------------------------------------------------
function p.extend(arr1, arr2)
checkType('extend', 1, arr1, 'table')
checkType('extend', 2, arr2, 'table')
for _, v in ipairs(arr2) do
arr1[#arr1 + 1] = v
end
end
end


return p
return p

Latest revision as of 11:14, 8 July 2024

Documentation for this module may be created at Module:TableTools/doc

--[[
------------------------------------------------------------------------------------
--                               TableTools                                       --
--                                                                                --
-- This module includes a number of functions for dealing with Lua tables.        --
-- It is a meta-module, meant to be called from other Lua modules, and should     --
-- not be called directly from #invoke.                                           --
------------------------------------------------------------------------------------
--]]

local libraryUtil = require('libraryUtil')

local p = {}

-- Define often-used variables and functions.
local floor = math.floor
local infinity = math.huge
local checkType = libraryUtil.checkType
local checkTypeMulti = libraryUtil.checkTypeMulti

--[[
------------------------------------------------------------------------------------
-- isPositiveInteger
--
-- This function returns true if the given value is a positive integer, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a given table key is in the array part or the
-- hash part of a table.
------------------------------------------------------------------------------------
--]]
function p.isPositiveInteger(v)
	if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then
		return true
	else
		return false
	end
end

--[[
------------------------------------------------------------------------------------
-- isNan
--
-- This function returns true if the given number is a NaN value, and false
-- if not. Although it doesn't operate on tables, it is included here as it is
-- useful for determining whether a value can be a valid table key. Lua will
-- generate an error if a NaN is used as a table key.
------------------------------------------------------------------------------------
--]]
function p.isNan(v)
	if type(v) == 'number' and tostring(v) == '-nan' then
		return true
	else
		return false
	end
end

--[[
------------------------------------------------------------------------------------
-- shallowClone
--
-- This returns a clone of a table. The value returned is a new table, but all
-- subtables and functions are shared. Metamethods are respected, but the returned
-- table will have no metatable of its own.
------------------------------------------------------------------------------------
--]]
function p.shallowClone(t)
	local ret = {}
	for k, v in pairs(t) do
		ret[k] = v
	end
	return ret
end

--[[
------------------------------------------------------------------------------------
-- removeDuplicates
--
-- This removes duplicate values from an array. Non-positive-integer keys are
-- ignored. The earliest value is kept, and all subsequent duplicate values are
-- removed, but otherwise the array order is unchanged.
------------------------------------------------------------------------------------
--]]
function p.removeDuplicates(t)
	checkType('removeDuplicates', 1, t, 'table')
	local isNan = p.isNan
	local ret, exists = {}, {}
	for i, v in ipairs(t) do
		if isNan(v) then
			-- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
			ret[#ret + 1] = v
		else
			if not exists[v] then
				ret[#ret + 1] = v
				exists[v] = true
			end
		end	
	end
	return ret
end			

--[[
------------------------------------------------------------------------------------
-- numKeys
--
-- This takes a table and returns an array containing the numbers of any numerical
-- keys that have non-nil values, sorted in numerical order.
------------------------------------------------------------------------------------
--]]
function p.numKeys(t)
	checkType('numKeys', 1, t, 'table')
	local isPositiveInteger = p.isPositiveInteger
	local nums = {}
	for k, v in pairs(t) do
		if isPositiveInteger(k) then
			nums[#nums + 1] = k
		end
	end
	table.sort(nums)
	return nums
end

--[[
------------------------------------------------------------------------------------
-- affixNums
--
-- This takes a table and returns an array containing the numbers of keys with the
-- specified prefix and suffix. For example, for the table
-- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will
-- return {1, 3, 6}.
------------------------------------------------------------------------------------
--]]
function p.affixNums(t, prefix, suffix)
	checkType('affixNums', 1, t, 'table')
	checkType('affixNums', 2, prefix, 'string', true)
	checkType('affixNums', 3, suffix, 'string', true)

	local function cleanPattern(s)
		-- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
		s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
		return s
	end

	prefix = prefix or ''
	suffix = suffix or ''
	prefix = cleanPattern(prefix)
	suffix = cleanPattern(suffix)
	local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$'

	local nums = {}
	for k, v in pairs(t) do
		if type(k) == 'string' then			
			local num = mw.ustring.match(k, pattern)
			if num then
				nums[#nums + 1] = tonumber(num)
			end
		end
	end
	table.sort(nums)
	return nums
end

--[[
------------------------------------------------------------------------------------
-- numData
--
-- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
-- of subtables in the format 
-- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
-- Keys that don't end with an integer are stored in a subtable named "other".
-- The compress option compresses the table so that it can be iterated over with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.numData(t, compress)
	checkType('numData', 1, t, 'table')
	checkType('numData', 2, compress, 'boolean', true)
	local ret = {}
	for k, v in pairs(t) do
		local prefix, num = mw.ustring.match(tostring(k), '^([^0-9]*)([1-9][0-9]*)$')
		if num then
			num = tonumber(num)
			local subtable = ret[num] or {}
			if prefix == '' then
				-- Positional parameters match the blank string; put them at the start of the subtable instead.
				prefix = 1
			end
			subtable[prefix] = v
			ret[num] = subtable
		else
			local subtable = ret.other or {}
			subtable[k] = v
			ret.other = subtable
		end
	end
	if compress then
		local other = ret.other
		ret = p.compressSparseArray(ret)
		ret.other = other
	end
	return ret
end

--[[
------------------------------------------------------------------------------------
-- compressSparseArray
--
-- This takes an array with one or more nil values, and removes the nil values
-- while preserving the order, so that the array can be safely traversed with
-- ipairs.
------------------------------------------------------------------------------------
--]]
function p.compressSparseArray(t)
	checkType('compressSparseArray', 1, t, 'table')
	local ret = {}
	local nums = p.numKeys(t)
	for _, num in ipairs(nums) do
		ret[#ret + 1] = t[num]
	end
	return ret
end

--[[
------------------------------------------------------------------------------------
-- sparseIpairs
--
-- This is an iterator for sparse arrays. It can be used like ipairs, but can
-- handle nil values.
------------------------------------------------------------------------------------
--]]
function p.sparseIpairs(t)
	checkType('sparseIpairs', 1, t, 'table')
	local nums = p.numKeys(t)
	local i = 0
	local lim = #nums
	return function ()
		i = i + 1
		if i <= lim then
			local key = nums[i]
			return key, t[key]
		else
			return nil, nil
		end
	end
end

--[[
------------------------------------------------------------------------------------
-- size
--
-- This returns the size of a key/value pair table. It will also work on arrays,
-- but for arrays it is more efficient to use the # operator.
------------------------------------------------------------------------------------
--]]

function p.size(t)
	checkType('size', 1, t, 'table')
	local i = 0
	for k in pairs(t) do
		i = i + 1
	end
	return i
end


local function defaultKeySort(item1, item2)
	-- "number" < "string", so numbers will be sorted before strings.
	local type1, type2 = type(item1), type(item2)
	if type1 ~= type2 then
		return type1 < type2
	else -- This will fail with table, boolean, function.
		return item1 < item2
	end
end

--[[
	Returns a list of the keys in a table, sorted using either a default
	comparison function or a custom keySort function.
]]
function p.keysToList(t, keySort, checked)
	if not checked then
		checkType('keysToList', 1, t, 'table')
		checkTypeMulti('keysToList', 2, keySort, { 'function', 'boolean', 'nil' })
	end
	
	local list = {}
	local index = 1
	for key, value in pairs(t) do
		list[index] = key
		index = index + 1
	end
	
	if keySort ~= false then
		keySort = type(keySort) == 'function' and keySort or defaultKeySort
		
		table.sort(list, keySort)
	end
	
	return list
end

--[[
	Iterates through a table, with the keys sorted using the keysToList function.
	If there are only numerical keys, sparseIpairs is probably more efficient.
]]
function p.sortedPairs(t, keySort)
	checkType('sortedPairs', 1, t, 'table')
	checkType('sortedPairs', 2, keySort, 'function', true)
	
	local list = p.keysToList(t, keySort, true)
	
	local i = 0
	return function()
		i = i + 1
		local key = list[i]
		if key ~= nil then
			return key, t[key]
		else
			return nil, nil
		end
	end
end

--[[
	Returns true if all keys in the table are consecutive integers starting at 1.
--]]
function p.isArray(t)
	checkType("isArray", 1, t, "table")
	
	local i = 0
	for k, v in pairs(t) do
		i = i + 1
		if t[i] == nil then
			return false
		end
	end
	return true
end

-- { "a", "b", "c" } -> { a = 1, b = 2, c = 3 }
function p.invert(array)
	checkType("invert", 1, array, "table")
	
	local map = {}
	for i, v in ipairs(array) do
		map[v] = i
	end
	
	return map
end

--[[
	{ "a", "b", "c" } -> { ["a"] = true, ["b"] = true, ["c"] = true }
--]]
function p.listToSet(t)
	checkType("listToSet", 1, t, "table")
	
	local set = {}
	for _, item in ipairs(t) do
		set[item] = true
	end
	
	return set
end

--[[
	Recursive deep copy function.
	Preserves identities of subtables.
	
]]
local function _deepCopy(orig, includeMetatable, already_seen)
	-- Stores copies of tables indexed by the original table.
	already_seen = already_seen or {}
	
	local copy = already_seen[orig]
	if copy ~= nil then
		return copy
	end
	
	if type(orig) == 'table' then
		copy = {}
		for orig_key, orig_value in pairs(orig) do
			copy[deepcopy(orig_key, includeMetatable, already_seen)] = deepcopy(orig_value, includeMetatable, already_seen)
		end
		already_seen[orig] = copy
		
		if includeMetatable then
			local mt = getmetatable(orig)
			if mt ~= nil then
				local mt_copy = deepcopy(mt, includeMetatable, already_seen)
				setmetatable(copy, mt_copy)
				already_seen[mt] = mt_copy
			end
		end
	else -- number, string, boolean, etc
		copy = orig
	end
	return copy
end

function p.deepCopy(orig, noMetatable, already_seen)
	checkType("deepCopy", 3, already_seen, "table", true)
	
	return _deepCopy(orig, not noMetatable, already_seen)
end

--[[
	Concatenates all values in the table that are indexed by a number, in order.
	sparseConcat{ a, nil, c, d }  =>  "acd"
	sparseConcat{ nil, b, c, d }  =>  "bcd"
]]
function p.sparseConcat(t, sep, i, j)
	local list = {}
	
	local list_i = 0
	for _, v in p.sparseIpairs(t) do
		list_i = list_i + 1
		list[list_i] = v
	end
	
	return table.concat(list, sep, i, j)
end

--[[
-- This returns the length of a table, or the first integer key n counting from
-- 1 such that t[n + 1] is nil. It is similar to the operator #, but may return
-- a different value when there are gaps in the array portion of the table.
-- Intended to be used on data loaded with mw.loadData. For other tables, use #.
-- Note: #frame.args in frame object always be set to 0, regardless of 
-- the number of unnamed template parameters, so use this function for
-- frame.args.
--]]
function p.length(t)
	local i = 1
	while t[i] ~= nil do
		i = i + 1
	end
	return i - 1
end

function p.inArray(arr, valueToFind)
	checkType("inArray", 1, arr, "table")
	
	-- if valueToFind is nil, error?
	
	for _, v in ipairs(arr) do
		if v == valueToFind then
			return true
		end
	end
	
	return false
end

return p